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Abstract—In this paper, shrinkage linear complex-valued least
mean squares (SL-CLMS) and shrinkage widely linear com-
plex-valued least mean squares (SWL-CLMS) algorithms are
devised for adaptive beamforming. By exploiting the relationship
between the noise-free a posteriori and a priori error signals, the
SL-CLMS method is able to provide a variable step size to update
the weight vector for the adaptive beamformer, significantly
enhancing the convergence speed and decreasing the steady-state
misadjustment. On the other hand, besides adopting a variable
step size determined by minimizing the square of the augmented
noise-free a posteriori errors, the SWL-CLMS approach exploits
the noncircular properties of the signal of interest, which consid-
erably improves the steady-state performance. Simulation results
are presented to illustrate their superiority over the CLMS,
complex-valued normalized LMS, variable step size, recursive
least squares (RLS) algorithms and their corresponding widely
linear-based schemes. Additionally, our proposed algorithms are
more computationally efficient than the RLS solutions though
they may have a slightly slower convergence rate.

Index Terms—Complex-valued least mean squares (CLMS),
convergence speed, shrinkage, steady-state, variable step size,
widely linear.

I. INTRODUCTION

I N adaptive filtering applications for modeling, equalization,
control, echo cancellation and beamforming, the complex-

valued least mean squares (CLMS) algorithm is a well-known
adaptive estimation and prediction technique which is capable
of converging to the optimal Wiener solution [1]. The applica-
tion of the CLMS algorithm to the beamforming and its anal-
ysis have been extensively studied [1]–[4]. The weight vector
of the adaptive beamformer can be computed based on different
kinds of design criteria. The most promising criteria include the
minimum mean-squared error (MMSE) [3], minimum variance
[5] and constant modulus [6]. In this paper, we focus on the
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scenario where the MMSE criterion is applied to the adaptive
beamforming system because it only requires the training se-
quence of the desired signal.
The incoming signals are usually assumed to be circular in the

conventional adaptive array and a linear and time invariant com-
plex filter is determined, such that its output
can optimize a second-order criterion, e.g., the MMSE [3] or
minimum variance distortionless response (MVDR) [5], under
certain constraints. Here, the superscript denotes the con-
jugate transpose operator and is the observation vector at
the output of the array. But in practice, noncircular (NC) sig-
nals, such as BPSK, offset-QPSK, PAM and ASK-modulated
signals, have been widely used in many modern communica-
tion systems. Although the conventional adaptive beamformer
has been shown to be optimal for circular sources [7], [8], it
becomes suboptimal for NC signals [9]–[13] because the prop-
erties of the NC signals have not yet been completely exploited.
Optimal widely-linear filters are of great value in many practical
situations if the signals share the second-order NC properties.
In order to make full use of the second-order NC properties, a
widely-linear complex-valued LMS (WL-CLMS) algorithm has
been proposed in [14] which uses the augmented vector

to replace . Here, is the transpose
operator. It is illustrated in [14] that the WL-CLMS algorithm
can yield much less mean square error (MSE) than the CLMS
algorithm. Moreover, the performance analysis of the CLMS
and WL-CLMS algorithms for smart antennas has been con-
ducted in [15]. It is shown that the CLMS algorithm is subop-
timal for the second-order NC signals whereas the WL-CLMS
scheme can potentially achieve a lower steady-state MSE [16],
[17] and provide a more accurate prediction of the mean and
mean-squares behaviors [18].
The CLMS and WL-CLMS algorithms in their basic form

directly give a solution to update the weight vector at each
iteration. The constant step size (CSS) controls the con-
vergence rate of the weight vector and also determines the
excess MSE (EMSE) [1]. The CSS which is suitable for
certain environments may result in poor performance when
the incoming signals are nonstationary. This motivates us to
choose the step size according to the incoming signals. One
possibility of accomplishing this is the complex-valued nor-
malized LMS (CNLMS) [19], [20] or its widely-linear variant,
namely, the widely-linear complex-valued normalized LMS
(WL-CNLMS) [21]. Although the CNLMS and WL-CNLMS
algorithms potentially have faster convergence speed than
the CLMS-type schemes, they still rely on the CSS which
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affects the convergence rate and degrades the performance
of the beamformer. Apart from the CNLMS-type algorithm,
another well-known solution is the complex-valued recur-
sive-least-square (RLS) or its widely-linear variant, namely,
the complex-valued widely-linear RLS (WL-RLS) algorithm
which updates the weight vector with fast convergence speed
and small steady-state misadjustment. However, the RLS
and WL-RLS algorithms are much more computationally de-
manding than the CLMS-type algorithms [22], [23]. In order to
reduce the complexity while keeping fast convergence speed,
the variable step size (VSS) and widely-linear VSS (WL-VSS)
algorithms have been introduced in [24] and [25], respectively.
The VSS-type method can provide faster convergence speed
and require less computational cost per iteration than the
RLS-type algorithms. Several variants of the VSS algorithms
have been proposed in [26]–[29]. However, they cannot enjoy
both fast tracking as well as small misadjustment with simple
implementation.
In this paper, we devise shrinkage linear complex-valued

LMS (SL-CLMS) and shrinkage widely-linear complex-valued
LMS (SWL-CLMS) algorithms. The SL-CLMS algorithm
provides an approximately optimal VSS by minimizing the
instantaneous square of the noise-free a posteriori error. In con-
trast with the SL-CLMS algorithm, the SWL-CLMS method
not only offers a VSS but also exploits the NC properties
of the signal-of-interest (SOI), resulting in a more accurate
weight vector. Simulations under different parameter settings
demonstrate that this VSS can improve the convergence speed
of the weight vector and yield much smaller steady-state errors.
To calculate the VSS, we need to estimate the noise-free a
priori error which can be obtained by the methods described
in [30]–[32]. Furthermore, it is illustrated that the proposed so-
lutions provide larger output signal-to-interference-plus-noise
ratio (SINR) and smaller MSE than the state-of-the-art methods.
Note that the variance of the additive noise of the array sensors
is assumed a priori known for our proposed methods [32].
The rest of the paper is organized as follows. In Section II, we

present the data model and review the CLMS and WL-CLMS
algorithms. In Section III, the SL-CLMS and SWL-CLMS algo-
rithms are derived. In Section IV, numerical examples are pro-
vided for performance comparison. Finally, Section V draws the
conclusion.
The following notations are used throughout the paper. Ma-

trices and vectors are represented by bold upper-case and bold
lower-case characters, respectively. Superscripts

and stand for the transpose, conjugate transpose,
conjugate and matrix inverse, respectively. The and
denote the identity matrix and zero matrix,
respectively. The stands for the mathematical expectation.
The and denote the Euclidean norm, absolute
value, -norm and -norm, respectively.

II. PRELIMINARIES

Let us consider an array of sensors receiving a far-field
narrowband signal with the direction-of-arrival (DOA)
. The signal is assumed to be zero-mean and potentially

second-order NC. The array measurement vector can be
written as

(1)

where is the steering vector
of the SOI with denoting the center frequency of the narrow-
band signal and , which is related to ,
being the time delay of the -th sensor relative to the first sensor,

is the additive noise vector con-
sisting of the interferences and background noise, which can be
expressed as

(2)

Here, we assume that there are statistically uncorre-
lated NC interferences whose complex envelopes are

, and their steering vectors are
denotes the background noise

which is uncorrelated with the SOI and interferences.
Given the weight vector , the output of

the beamformer is

(3)

In the conventional adaptive CLMS algorithm, the optimal
weight vector is obtained by minimizing theMSE between
the output of the beamformer and desired signal , i.e.,

(4)

Here, we set . After some straightforward calcu-
lations, the optimal weight vector is

(5)

where and . Sim-
ilar to [1], by minimizing the power of the instantaneous error

:

(6)

we get the update equation for the weight vector

(7)

with denoting the step size.
When the signal is NC, the covariance matrix can

no longer completely describe the second-order properties of the
random vector . Suppose that the SOI has the strictly NC
property which may correspond to the BPSK, offset QPSK and
PAM signals. Consequently, the SOI symbol snapshot vector
can be decomposed as

(8)

where contains the initial complex phase shift of the SOI
and is the real-valued symbol snapshots. According to (8),
the received signal and its conjugated version are correlated.
That is to say, the conjugated signal also contains useful in-
formation of the SOI, i.e., the pseudo-covariance matrix

. In order to take advantage of the ben-
efits associated with the NC properties, we apply the widely-



SHI et al.: SL-CLMS AND SWL-CLMS ALGORITHMS 121

linear processing and define the augmented measurement vector
as

(9)

where and are the augmented steering vector and
augmented noise vector, respectively. Moreover, in analogy to
the CLMS, the cost function for the WL-CLMS is written as

(10)

where is the augmented instantaneous
error and is the output of the augmented
beamformer. Here, is the widely-
linear weight vector whose update equation is given by

(11)

(12)

Thus, minimizing leads to the optimal widely-linear
weight vector, given as

(13)

where

(14)

and .

III. PROPOSED ALGORITHMS

In the standard CLMS andWL-CLMS algorithms, is a con-
stant. In order to obtain such a weight vector that is as
close as possible to the Wiener solution, the VSS and its vari-
ants have been developed in [24]–[29]. These VSS-type and
WL-VSS-type algorithms, however, cannot guarantee that the
VSS is approximately optimal for each weight vector update
as they have not well exploited the characteristics of the ad-
ditive noise and input signals. Usually, the characteristics of
the additive noise and input signals considerably affect the be-
havior of the VSS. In this section, we derive the SL-CLMS and
SWL-CLMS algorithms which can provide an approximately
optimal step size for each weight vector update, leading to a su-
perior performance of the adaptive beamformer.

A. SL-CLMS Algorithm

Replacing the CSS in (7) with a VSS , the weight vector
is updated as

(15)

Assume that the paired sequence is wide-sense
stationary. Consequently, the optimal weight vector is
invariant in time, i.e., [33], [34]. Setting the
weight error vector as

(16)

we can express the update equation for in terms of :

(17)

where . The error between the
output of the beamformer and SOI at the time instant
is

(18)

where

(19)

is the noise-free a priori error. Moreover, the a posteriori error
can be expressed as

(20)

with

(21)

being the noise-free a posteriori error. Taking the conjugate
transpose of (17) and post-multiplying by on both sides,
we get

(22)

The power of is expressed as

(23)

Taking the derivative of in (23) with respect to and
setting the resultant expression to 0 yield

(24)

Substituting (18) into (24), we have

(25)
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It is enlightening to take the expectation of (25) on both sides to
study the mean behavior of . Note that

(26)

Therefore, the input signal is stochastically orthogonal to
. Indeed, is approximately uncorrelated with

for transient as well as steady states, as will be verified in the
simulation results. This is because the amplitude of be-
comes quite small and changes slightly compared with
[32]. As a result, we can neglect the dependence of on

. Due to the fact that , we obtain

(27)

Next, depends only on for and is
independent of the current input signal as we assume that
the input sequences are independent. Then we have

(28)

Taking the expectation of (25) and combining the results in
(26)–(28), we get

(29)

where it is assumed that

(30)

Here (30) is based on the assumption that is uncorrelated
with and . Moreover, the rationale of this assumption
will be explained at the end of Section III-A.
Since is the EMSE which measures the mis-

match between the weight vector and optimal weight
vector , setting

(31)

and replacing by in (7), we obtain the CLMS variant with
VSS . In many practical applications, is known
and is estimated via

(32)

where is the forgetting factor and satisfies . How-
ever, the noise-free a priori error is unknown and themain
difficulty to solve (31) is to calculate . According to
the shrinkage denoising (soft-thresholding) method described in
[30], [31], the noise-free a priori error can be recovered
from the a priori error . A noisy SOI can be ex-
pressed as

(33)

where is the observed data vector and is a zero-mean inde-
pendent and identically distributed (i.i.d.) Gaussian vector. The
task is to recover the SOI from . According to [31], the cost
function of this denoising problem is

(34)

where is a prespecified and redundant dictionary
and governs the tradeoff between the representation error and
its sparsity, namely, the first and second terms on the right hand
side of (34). The SOI can be represented as

(35)

with being expected to be sparse, that is to say, . As
a result, by minimizing the cost function in (34) with respect to
, the optimal estimates of SOI is computed as

(36)

where

(37)

From (18), we see that the noise-free a priori error can
be recovered from the a priori error using the shrinkage
denoising method. The cost function in (34) now becomes

(38)

Due to the fact that reduces to 1 and becomes 1 in this case,
we obtain . In other words, is the optimal estimate
of . Minimizing with respect to yields

(39)

Note that the choice of the threshold parameter is very im-
portant. Assume that the background noise is zero-mean white
Gaussian distributed with covariancematrix and the inter-
ferences are far away from the main lobe of the SOI. As a result,
the optimal weight vector maintains the most energy of the
SOI while suppressing the energy of the interferences, i.e.,

(40a)

(40b)

Form (18) and (40), we obtain

(41)

As the background noise is a spatially and temporally
white Gaussian process, we set to guarantee that
the beampattern equals 1 at the DOA of the SOI and the array
gain is maximized [35]. As a result, from (41) we obtain

(42)
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TABLE I
PSEUDO CODE OF SL-CLMS ALGORITHM

Note that the dependence of on the interferences
has been neglected in the derivation of (41). As a result, fine

tuning of the threshold parameter around could yield

improved performance. Here, is chosen as
where is the parameter to compensate the approximation we
have made above. In analogy to ,

(43)

can be used to estimate the numerator in (31). The
proposed SL-CLMS algorithm is summarized as in Table I.
From the update equations, namely, Step 3 in the SL-CLMS
algorithm, we can conclude that the assumption of (30) is valid.
It follows from (44b) and (44d) that the and vary
slowly compared with and when is close to 1. As
a result, according to (44e), is approximately uncorrelated
with and .

B. SWL-CLMS Algorithm

Similar to the analysis in Section III-A, subtracting the corre-
sponding optimal weight vectors of on both sides
of (11), we get the update equation of the weight error vector

as

(45)

Moreover, subtracting on both sides of (12) yields

(46)

with . Here, the VSS is used to re-
place the CSS in (11) and (12). According to (10), (45) and
(46), the vector-matrix form for the weight vector errors be-
comes

(47)

where is the
error obtained by utilizing the optimal augmented weight vector

on the augmented input signal
. Taking the conjugate transpose of (47) and

post-multiplying both sides with the augmented input signal
, we get

(48)

where

(49)

is the augmented noise-free a posteriori error and

(50)

is the augmented noise-free a priori error. In analogy to the
SL-CLMS, the square of the instantaneous augmented noise-
free a posteriori error can be written as

(51)

Taking as the cost function and setting its derivative
with respect to to 0, we obtain

(52)

The instantaneous error at the time instant is

(53)

Substituting (53) into (52) yields

(54)

It is observed that

(55)

In analogy to independence assumption of and in
Section III-A, we assume that is approximately uncorre-
lated with . Because is orthogonal to the augmented
input signal and , we conclude that
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TABLE II
PSEUDO CODE OF SWL-CLMS ALGORITHM

the a priori error is approximately uncorrelated with the
augmented input signal , i.e.,

(56)

According to (45) and (46), we conclude that is uncorre-
lated with and is uncorrelated with . Setting

and making use of the result in (55),
we obtain

(57)

Taking expectations on both sides of (52) and employing (56)
and (57), we have

(58)

which is based on the assumption

(59)

and the rationale of this assumption will be explained at the end
of Section III-B. Taking as the estimate of and substi-
tuting it into (47), we get the WL-CLMS variant with VSS .
Following the discussion in Section III-A, the MSE of the

error signals in (58) is estimated via

(60)

and the time average of the square of the , i.e.,

(61)

can be used to replace in (58). The estimate of
is recovered from by using (39) as

(62)

Next, we will discuss how to choose the threshold parameter
which is associated with . As the interferences

and background noise are uncorrelated with the SOI, can be
expressed as

(63)

where is the power of the SOI. As a result, (13) can be
rewritten as

(64)

which is similar to the optimal widely-linear MVDR beam-
former [35]

(65)

with . The and only
have a difference in the constant factor. As a result, when the
DOAs of the interferences are far away from the DOA of the
SOI, the following conclusions can be drawn

(66a)

(66b)

where , with
being the initial phase of the th interference. The approxi-

mate estimate of is given as

(67)

with . According to [35], we always
have , which, when substituted into (67), leads
to

(68)

Moreover, the threshold parameter can be chosen such that

with varying from 1 to 4, which is the
regulation parameter to compensate the approximation we have
made in the derivation of . The SWL-CLMS algorithm is sum-
marized in Table II. It follows from (69b) and (69d) in Step 3,
we can conclude that and vary slowly when the
parameter is close to 1. Consequently, according to (69e), the
VSS is approximately uncorrelated with and , and
thus the assumption of (59) is valid.

C. Complexity Analysis

Here, we evaluate the computational complexity of the
proposed SL-CLMS and SWL-CLMS algorithms. The compu-
tational cost is determined in the form of the number of complex
arithmetic operations, i.e., additions and multiplications, per
iteration per symbol for each approach as a function of the
number of sensors . The results are depicted in Table III. It
is seen that the complexities of the SL-CLMS and SWL-CLMS
algorithms are while those of the RLS and WL-RLS
solutions are . As a result, the proposed CLMS-based
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TABLE III
COMPUTATIONAL COMPLEXITIES OF DIFFERENT ALGORITHMS

approaches enjoy a simpler computational complexity than
the RLS-based schemes especially when is large. For the
SL-CLMS and SWL-CLMS without the approximations in
(27) and (56), they have slightly higher computational loads
than their variants with the approximations as the former need
to calculate per iteration. Moreover, it is observed that
the WL-based algorithms are more computationally demanding
than the conventional methods because the calculations of
larger matrices result in higher complexity requirement.
In order to validate the complexities of these methods, we

provide their computational times in Section IV. The computa-
tional times are determined by the execution time in MATLAB
with the version of 7.11.0.584 (R2010b). Note that the execution
time is measured by the average CPU time required to compute
each algorithm on a personal computer with an Intel i3–3220
3.3 GHz processor and 4 GB RAM.

IV. SIMULATION RESULTS

In this section, we evaluate the output SINRs,MSEs and com-
putational times of the proposed algorithms for adaptive beam-
forming. In particular, the SL-CLMS algorithm is compared
with the CLMS, CNLMS, RLS and VSS methods. Moreover,
the SWL-CLMS algorithm is compared with the WL-CLMS,
WL-CNLMS, WL-RLS and WL-VSS solutions. Furthermore,
the effects of approximations in (27) and (56), are numerically
investigated. In our simulations, a uniform linear array con-
sisting of omnidirectional sensors with an interelement
spacing of half wavelength is considered. We assume that there
are four equipowered BPSK signals with noncircularity coeffi-
cient of 1 and their initial phases are all fixed at 0 . Among the
four BPSK signals impinging on the array, the SOI is presumed
to arrive at while three interferences impinge on
the array with DOAs of and .
Unless stated otherwise, the signal-to-noise ratio (SNR) and the
interference-to-noise ratio are all fixed at 10 dB. In all exam-
ples, the numerical results are averaged over 500 independent
Monte Carlo simulations. For the SL-CLMS algorithm, the ini-
tial values of the parameters are set as
and . Moreover, the initial values of the parame-
ters for the SWL-CLMS algorithm are

and . The forgetting factor is
fixed at for both of them.

A. Output SINR Performance Versus Number of Iterations

In the first example, the effect of on the output SINR per-
formance is examined. For comparison, the numerical results
of the CLMS and WL-CLMS algorithms are provided as well.
The step size of the CLMS and WL-CLMS algorithms are fixed

Fig. 1. Output SINRs of SL-CLMS, SWL-CLMS, CLMS and WL-CLMS al-
gorithms. (a) . (b) .

at and , respectively. It is observed in Fig. 1 that
the SL-CLMS and SWL-CLMS algorithms converge faster than
their counterparts in both cases. Moreover, due to the fact that
the WL-CLMS and SWL-CLMS algorithms take advantage of
the NC properties of the SOI, they yield larger output SINR than
their counterparts. From Fig. 1, we see that the value of has
little influence on the steady-state performance of the SL-CLMS
algorithm. Furthermore, the SWL-CLMS algorithm with
has a slightly performance improvement compared with the sce-
nario of .
Fig. 2 shows the output SINR performance versus the

number of iterations with being fixed at 2. In Fig. 2(a), the
CSS is fixed at and for the WL-CLMS
and CLMS algorithms, respectively. In Fig. 2(b), the CSS
is fixed at and for the WL-CLMS and
CLMS algorithms, respectively. It is seen in Fig. 2(a) that the
WL-CLMS and CLMS algorithms have a faster convergence
speed compared with those in Fig. 1(b). That is due to the fact
that a large CSS leads to a fast convergence speed. However,
the WL-CLMS and CLMS algorithms can only arrive at a small
output SINR in the steady-state. If we fix the step size as half
of the value of in Fig. 1(b), from Fig. 2(b), we observe that
the WL-CLMS and CLMS algorithms arrive at the same output
SINR in the steady-state as the proposed methods. However,
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Fig. 2. Output SINRs of SL-CLMS, SWL-CLMS, CLMS, WL-CLMS algo-
rithms for different .

it is seen in Fig. 2(b) that the WL-CLMS and CLMS algo-
rithms approach the steady-state at about the 200th and 400th
iterations, respectively. Moreover, the WL-CLMS and CLMS
algorithms arrive at the steady-state at around the 100th and
200th iterations, respectively, as shown in Fig. 1(b). That is due
to the fact that a small CSS leads to a slow convergence speed.
On the contrary, it is observed in Fig. 2 that the SWL-CLMS
and SL-CLMS methods reach the steady-state only at around
the 60th and 100th iterations, respectively. Furthermore, the
output SINRs of the proposed SWL-CLMS and SL-CLMS
algorithms can converge to the optimal WL SINR and SINR,
respectively. As a result, by utilizing the VSS, our proposed
algorithms can provide a faster convergence speed and a larger
output SINR than the WL-CLMS and CLMS solutions.
The empirical results of the output SINRs of the SL-CLMS,

SWL-CLMS, RLS and WL-RLS algorithms are shown in
Fig. 3. It is seen that the SL-CLMS method approximately
provides the same output SINR as the RLS method while
the SWL-CLMS scheme has the same output SINR as the

Fig. 3. Output SINRs of SL-CLMS, SWL-CLMS, RLS and WL-RLS algo-
rithms.

WL-RLS solution in the steady-state. Moreover, the output
SINRs of the SL-CLMS and RLS algorithms are smaller
than the WL-based schemes because they do not exploit the
NC properties of the signals. However, Fig. 3 shows that the
RLS and WL-RLS algorithms can converge faster than the
SL-CLMS and SWL-CLMS methods, respectively. Although
the RLS-based approaches converge faster, they require much
more computational cost than the proposed methods, as will be
verified in Fig. 11.
Let us now compare the SL-CLMS algorithm with the

CNLMS and VSS [24] methods and compare the SWL-CLMS
algorithm with theWL-CNLMS andWL-VSS [25] approaches.
According to [20], [21], the update equation for the CNLMS is

(70)

and the update equations for the WL-CNLMS are

(71)

(72)

with and . The VSS method derived in [24] has
the form of

(73)

where the updating rule for the VSS is

(74)

with and

(75)

Here, and . Similar to the VSS
method, the weight vector of the WL-VSS algorithm is adjusted
according to

(76)

(77)

where is determined by the same rule as the VSS method ex-
cept that and are fixed at and ,
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Fig. 4. Output SINRs of SL-CLMS, SWL-CLMS, CNLMS, WL-CNLMS,
VSS and WL-VSS algorithms.

respectively. It can be seen in Fig. 4 that the proposed
methods yield faster convergence speeds than the CNLMS
and WL-CNLMS algorithms and larger output SINRs than the
VSS and WL-VSS solutions. Furthermore, the SWL-CLMS,
WL-CNLMS and WL-VSS algorithms outperforms their
counterparts, i.e., the SL-CLMS, CNLMS and VSS methods
because they exploit the NC properties of the SOI.
In order to investigate the effect of approximations in

(27) and (56), similar to the estimates of and
in (32) and (60), we estimate and

by using the following equations:

(78)

and

(79)

respectively. According to (31) and (58), when there exist no
approximations in (27) and (56), the VSS for the SL-CLMS
and SWL-CLMS algorithms can be rewritten as

(80)

and

(81)

respectively. As a result, based on (78) and (79), the update
equations of the VSS in Tables I and II can be rewritten as

(82)

and

(83)

respectively. Fig. 5 shows the output SINRs of the SL-CLMS
and SWL-CLMS algorithms with and without approximations
in (27) and (56) for . The SNR is fixed at 10 dB and 0 dB
in Figs. 5(a) and (b), respectively. It is seen that the SL-CLMS
and SWL-CLMS algorithms yield approximately the same

Fig. 5. Output SINRs of the SL-CLMS and SWL-CLMS algorithms with and
without approximations in (27) and (56). (a) dB. (b) dB.

output SINRs no matter the approximations in (27) and (56)
are adopted or not. That is because the noise-free a priori
error and the augmented noise-free a priori error
become small even prior to the steady-state and vary slightly
compared to the input signal . So the approximations in
(27) and (56) have little influence on the performance of the
proposed methods. Moreover, we can see that these approxi-
mations are still valid for different SNR settings.

B. Output MSE Performance Versus Number of Iterations

In this example, we examine the output MSEs of various
approaches with the same parameter settings as those in Fig. 1.
From Fig. 6, we observe that the SL-CLMS and SWL-CLMS
algorithms converge faster than the CLMS and WL-CLMS
schemes, respectively. Note that the SL-CLMS and CLMS
algorithms have almost the same steady-state MSEs, and the
SWL-CLMS and WL-CLMS schemes yield approximately
the same steady-state MSEs. Furthermore, the WL-based so-
lutions can obtain a much smaller MSE than the conventional
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Fig. 6. Learning curves: MSEs of SL-CLMS, SWL-CLMS, CLMS and
WL-CLMS algorithms. (a) . (b) .

algorithms since the NC properties have been taken into con-
sideration. Because the augmented array aperture makes the
SWL-CLMS algorithm more sensitive to the choice of , we
observe in Fig. 6(a) that the SWL-CLMS method is slightly
inferior to the WL-CLMS algorithm in the steady-state at

. However, Fig. 6(b) shows that the SWL-CLMS algo-
rithm slightly outperforms the WL-CLMS scheme at .
Moreover, unlike the WL-based algorithms, the value of has
little influence on the performance of the SL-CLMS and CLMS
approaches.
The learning curves of the SL-CLMS, SWL-CLMS, CLMS

and WL-CLMS algorithms for different values of are shown
in Fig. 7. Compared with Fig. 6(b), the CLMS and WL-CLMS
schemes have much faster convergence speeds in Fig. 7(a), be-
cause their step sizes are fixed at and , re-
spectively, which are eight times larger than their corresponding
step sizes in Fig. 6(b). It is observed in Fig. 7(a) that the learning
curves of the WL-CLMS and CLMS algorithms converge at

dB and 0 dB, respectively. However, with in

Fig. 7. Learning curves: MSEs of SL-CLMS, SWL-CLMS, CLMS and
WL-CLMS algorithms for different .

Fig. 6(b), they converge at dB and dB, respectively.
Fig. 7(b) shows the MSEs of the proposed methods versus the
WL-CLMS andCLMS algorithmswith and

, respectively. Although the CLMS and WL-CLMS
algorithms can approach the same steady-state as the proposed
methods, they need a larger number of iterations to reach the
steady-state compared with the scenario in Fig. 6(b). That is, the
CLMS and WL-CLMS require 200 and 400 iterations, respec-
tively, while the SL-CLMS and SWL-CLMS only need 150 and
250 iterations, respectively. Consequently, the proposed algo-
rithms outperform their counterparts no matter in convergence
speed or MSE performance.
Fig. 8 shows the output MSEs of the SL-CLMS,

SWL-CLMS, RLS and WL-RLS methods. It is observed
that the RLS and WL-RLS algorithms need around 30 and 60
iterations, respectively, to arrive at the steady-state. On the
other hand, the SL-CLMS and SWL-CLMS algorithms require
about 120 and 100 iterations, respectively. Hence, the RLS and
WL-RLS solutions yield faster convergence speeds than the
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Fig. 8. Learning curves: MSEs of SL-CLMS, SWL-CLMS, RLS andWL-RLS
algorithms.

Fig. 9. Learning curves: MSEs of SL-CLMS, SWL-CLMS, CNLMS,
WL-CNLMS, VSS and WL-VSS algorithms.

SL-CLMS and SWL-CLMS algorithms. However, the faster
convergence speeds of the former are achieved at the cost
of higher computational load which will be demonstrated in
Fig. 11. From Fig. 8, we can also see that the RLS and WL-RLS
algorithms have larger steady-state misadjustments compared
with the proposed approaches when the number of iterations
is small. Furthermore, the SWL-CLMS and WL-RLS methods
arrive at the same steady-state while the SL-CLMS and RLS
algorithms have the same steady-state behavior. However, the
SWL-CLMS and SL-CLMS can yield smaller output MSEs as
they utilize the NC properties of the signals.
In Fig. 9, we examine the learning curves of the SL-CLMS

and SWL-CLMS methods. For comparison, the results of the
CNLMS, WL-CNLMS, VSS and WL-VSS algorithms are also
presented. The parameter settings of the CNLMS,WL-CNLMS,
VSS and WL-VSS algorithms are the same as those in Fig. 4. It
can be seen that the SL-CLMS and SWL-CLMSmethods arrive
at the steady-state at about the 60th and 50th iterations, respec-
tively. However, the CNLMS andWL-CNLMS algorithms need

Fig. 10. Learning curves: MSEs of SL-CLMS and SWL-CLMS algorithms
with and without approximations in (27) and (56). (a) dB. (b)

dB.

100 and 150 iterations, respectively. Hence, the SL-CLMS and
SWL-CLMS algorithms converge faster than the CNLMS and
WL-CNLMS algorithms, respectively. Although the VSS and
WL-VSS algorithms approximately have the same convergence
speed as the SL-CLMS and SWL-CLMS methods, they yield
larger steady-state misadjustments. We conclude that the pro-
posed methods yield fast convergence speeds and small MSEs.
The outputMSEs of the SL-CLMS and SWL-CLMSmethods

with and without approximations in (27) and (56) are displayed
in Fig. 10. Figs. 10(a) and (b) correspond to the scenarios with

dB and dB, respectively. The other pa-
rameter settings are the same as those in Fig. 5. We see that
the approximations have little influence on the output MSEs of
our proposed approaches. Furthermore, these approximations
always hold for different SNR settings.

C. Computational Times Versus Number of Sensors

We now investigate the computational times of the
SL-CLMS, SWL-CLMS, RLS and WL-RLS methods. It
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Fig. 11. Computational times of SL-CLMS, SWL-CLMS, RLS and WL-RLS
algorithms versus number of sensors.

Fig. 12. Computational times of SL-CLMS and SWL-CLMS algorithms with
and without approximations in (27) and (56) versus number of sensors.

is observed in Fig. 11 that the CLMS-based algorithms always
have much lower computational costs than the RLS-based
schemes especially when the number of sensors becomes large.
The proposed SWL-CLMS algorithm is slightly more compu-
tationally expensive than the SL-CLMS method because the
augmented signal structure increases the aperture of the array.
Similarly, the WL-RLS algorithm has a higher computational
load than the RLS approach.
Fig. 12 shows the computational times of the SL-CLMS and

SWL-CLMS algorithms with and without approximations in
(27) and (56). It is observed that the SL-CLMS has the lowest
complexity among all the methods. The SL-CLMS algorithm
without approximation requires more computational cost than
its variant with approximation as the former needs to calculate

per iteration. Similarly, the exact SWL-CLMS has a
lower computational load than its variant without approxima-
tion. Moreover, the WL-based algorithms are more computa-
tionally demanding than the conventional methods.

V. CONCLUSION

The SL-CLMS and SWL-CLMS algorithms for adaptive
beamforming have been devised in this paper. Apart from
having faster convergence speeds of the weight vectors, the
proposed solutions can also provide much larger output SINRs
and smaller MSEs. Moreover, they always need lower compu-
tational complexities than the RLS-based algorithms. The step
size of the SL-CLMS algorithm is adjusted according to the
relationship between the noise-free a posteriori and a priori
errors. As a result, the algorithm can adaptively adjust the step
size to provide faster convergence rate and less misadjustment
than the CLMS algorithm. On the other hand, besides adopting
a variable step size determined by minimizing the square of
the augmented noise-free a posteriori errors, the SWL-CLMS
algorithm takes advantage of the NC properties of the SOI,
eventually leading to considerable improvements in the output
SINR for the adaptive beamformer.
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